3.5.84 \(\int \frac {\coth ^5(e+f x)}{\sqrt {a+b \sinh ^2(e+f x)}} \, dx\) [484]

Optimal. Leaf size=126 \[ -\frac {\left (8 a^2-8 a b+3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \sinh ^2(e+f x)}}{\sqrt {a}}\right )}{8 a^{5/2} f}-\frac {(8 a-3 b) \text {csch}^2(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{8 a^2 f}-\frac {\text {csch}^4(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{4 a f} \]

[Out]

-1/8*(8*a^2-8*a*b+3*b^2)*arctanh((a+b*sinh(f*x+e)^2)^(1/2)/a^(1/2))/a^(5/2)/f-1/8*(8*a-3*b)*csch(f*x+e)^2*(a+b
*sinh(f*x+e)^2)^(1/2)/a^2/f-1/4*csch(f*x+e)^4*(a+b*sinh(f*x+e)^2)^(1/2)/a/f

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3273, 91, 79, 65, 214} \begin {gather*} -\frac {(8 a-3 b) \text {csch}^2(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{8 a^2 f}-\frac {\left (8 a^2-8 a b+3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \sinh ^2(e+f x)}}{\sqrt {a}}\right )}{8 a^{5/2} f}-\frac {\text {csch}^4(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{4 a f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Coth[e + f*x]^5/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

-1/8*((8*a^2 - 8*a*b + 3*b^2)*ArcTanh[Sqrt[a + b*Sinh[e + f*x]^2]/Sqrt[a]])/(a^(5/2)*f) - ((8*a - 3*b)*Csch[e
+ f*x]^2*Sqrt[a + b*Sinh[e + f*x]^2])/(8*a^2*f) - (Csch[e + f*x]^4*Sqrt[a + b*Sinh[e + f*x]^2])/(4*a*f)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 91

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c - a*d
)^2*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d^2*(d*e - c*f)*(n + 1))), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3273

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[x^((m - 1)/2)*((a + b*ff*x)^p/(1 - ff*x)^((m
 + 1)/2)), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\coth ^5(e+f x)}{\sqrt {a+b \sinh ^2(e+f x)}} \, dx &=\frac {\text {Subst}\left (\int \frac {(1+x)^2}{x^3 \sqrt {a+b x}} \, dx,x,\sinh ^2(e+f x)\right )}{2 f}\\ &=-\frac {\text {csch}^4(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{4 a f}+\frac {\text {Subst}\left (\int \frac {\frac {1}{2} (8 a-3 b)+2 a x}{x^2 \sqrt {a+b x}} \, dx,x,\sinh ^2(e+f x)\right )}{4 a f}\\ &=-\frac {(8 a-3 b) \text {csch}^2(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{8 a^2 f}-\frac {\text {csch}^4(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{4 a f}+\frac {\left (8 a^2-8 a b+3 b^2\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\sinh ^2(e+f x)\right )}{16 a^2 f}\\ &=-\frac {(8 a-3 b) \text {csch}^2(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{8 a^2 f}-\frac {\text {csch}^4(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{4 a f}+\frac {\left (8 a^2-8 a b+3 b^2\right ) \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^2(e+f x)}\right )}{8 a^2 b f}\\ &=-\frac {\left (8 a^2-8 a b+3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \sinh ^2(e+f x)}}{\sqrt {a}}\right )}{8 a^{5/2} f}-\frac {(8 a-3 b) \text {csch}^2(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{8 a^2 f}-\frac {\text {csch}^4(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{4 a f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.26, size = 100, normalized size = 0.79 \begin {gather*} \frac {\left (-8 a^2+8 a b-3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \sinh ^2(e+f x)}}{\sqrt {a}}\right )+\sqrt {a} \text {csch}^2(e+f x) \left (-8 a+3 b-2 a \text {csch}^2(e+f x)\right ) \sqrt {a+b \sinh ^2(e+f x)}}{8 a^{5/2} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Coth[e + f*x]^5/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

((-8*a^2 + 8*a*b - 3*b^2)*ArcTanh[Sqrt[a + b*Sinh[e + f*x]^2]/Sqrt[a]] + Sqrt[a]*Csch[e + f*x]^2*(-8*a + 3*b -
 2*a*Csch[e + f*x]^2)*Sqrt[a + b*Sinh[e + f*x]^2])/(8*a^(5/2)*f)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 1.61, size = 54, normalized size = 0.43

method result size
default \(\frac {\mathit {`\,int/indef0`\,}\left (\frac {\frac {1}{\sinh \left (f x +e \right )}+\frac {2}{\sinh \left (f x +e \right )^{3}}+\frac {1}{\sinh \left (f x +e \right )^{5}}}{\sqrt {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}}, \sinh \left (f x +e \right )\right )}{f}\) \(54\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(f*x+e)^5/(a+b*sinh(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

`int/indef0`((1/sinh(f*x+e)+2/sinh(f*x+e)^3+1/sinh(f*x+e)^5)/(a+b*sinh(f*x+e)^2)^(1/2),sinh(f*x+e))/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)^5/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(coth(f*x + e)^5/sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 1442 vs. \(2 (110) = 220\).
time = 0.52, size = 3086, normalized size = 24.49 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)^5/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(((8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^8 + 8*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)*sinh(f*x + e)^7 + (8
*a^2 - 8*a*b + 3*b^2)*sinh(f*x + e)^8 - 4*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^6 + 4*(7*(8*a^2 - 8*a*b + 3*b^
2)*cosh(f*x + e)^2 - 8*a^2 + 8*a*b - 3*b^2)*sinh(f*x + e)^6 + 8*(7*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^3 - 3
*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e))*sinh(f*x + e)^5 + 6*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^4 + 2*(35*(8
*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^4 - 30*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^2 + 24*a^2 - 24*a*b + 9*b^2)*
sinh(f*x + e)^4 + 8*(7*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^5 - 10*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^3 +
3*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e))*sinh(f*x + e)^3 - 4*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^2 + 4*(7*(8
*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^6 - 15*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^4 + 9*(8*a^2 - 8*a*b + 3*b^2)
*cosh(f*x + e)^2 - 8*a^2 + 8*a*b - 3*b^2)*sinh(f*x + e)^2 + 8*a^2 - 8*a*b + 3*b^2 + 8*((8*a^2 - 8*a*b + 3*b^2)
*cosh(f*x + e)^7 - 3*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^5 + 3*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^3 - (8*
a^2 - 8*a*b + 3*b^2)*cosh(f*x + e))*sinh(f*x + e))*sqrt(a)*log((b*cosh(f*x + e)^4 + 4*b*cosh(f*x + e)*sinh(f*x
 + e)^3 + b*sinh(f*x + e)^4 + 2*(4*a - b)*cosh(f*x + e)^2 + 2*(3*b*cosh(f*x + e)^2 + 4*a - b)*sinh(f*x + e)^2
- 4*sqrt(2)*sqrt(a)*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*
sinh(f*x + e) + sinh(f*x + e)^2))*(cosh(f*x + e) + sinh(f*x + e)) + 4*(b*cosh(f*x + e)^3 + (4*a - b)*cosh(f*x
+ e))*sinh(f*x + e) + b)/(cosh(f*x + e)^4 + 4*cosh(f*x + e)*sinh(f*x + e)^3 + sinh(f*x + e)^4 + 2*(3*cosh(f*x
+ e)^2 - 1)*sinh(f*x + e)^2 - 2*cosh(f*x + e)^2 + 4*(cosh(f*x + e)^3 - cosh(f*x + e))*sinh(f*x + e) + 1)) - 4*
sqrt(2)*((8*a^2 - 3*a*b)*cosh(f*x + e)^5 + 5*(8*a^2 - 3*a*b)*cosh(f*x + e)*sinh(f*x + e)^4 + (8*a^2 - 3*a*b)*s
inh(f*x + e)^5 - 2*(4*a^2 - 3*a*b)*cosh(f*x + e)^3 + 2*(5*(8*a^2 - 3*a*b)*cosh(f*x + e)^2 - 4*a^2 + 3*a*b)*sin
h(f*x + e)^3 + 2*(5*(8*a^2 - 3*a*b)*cosh(f*x + e)^3 - 3*(4*a^2 - 3*a*b)*cosh(f*x + e))*sinh(f*x + e)^2 + (8*a^
2 - 3*a*b)*cosh(f*x + e) + (5*(8*a^2 - 3*a*b)*cosh(f*x + e)^4 - 6*(4*a^2 - 3*a*b)*cosh(f*x + e)^2 + 8*a^2 - 3*
a*b)*sinh(f*x + e))*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*
sinh(f*x + e) + sinh(f*x + e)^2)))/(a^3*f*cosh(f*x + e)^8 + 8*a^3*f*cosh(f*x + e)*sinh(f*x + e)^7 + a^3*f*sinh
(f*x + e)^8 - 4*a^3*f*cosh(f*x + e)^6 + 6*a^3*f*cosh(f*x + e)^4 + 4*(7*a^3*f*cosh(f*x + e)^2 - a^3*f)*sinh(f*x
 + e)^6 - 4*a^3*f*cosh(f*x + e)^2 + 8*(7*a^3*f*cosh(f*x + e)^3 - 3*a^3*f*cosh(f*x + e))*sinh(f*x + e)^5 + 2*(3
5*a^3*f*cosh(f*x + e)^4 - 30*a^3*f*cosh(f*x + e)^2 + 3*a^3*f)*sinh(f*x + e)^4 + a^3*f + 8*(7*a^3*f*cosh(f*x +
e)^5 - 10*a^3*f*cosh(f*x + e)^3 + 3*a^3*f*cosh(f*x + e))*sinh(f*x + e)^3 + 4*(7*a^3*f*cosh(f*x + e)^6 - 15*a^3
*f*cosh(f*x + e)^4 + 9*a^3*f*cosh(f*x + e)^2 - a^3*f)*sinh(f*x + e)^2 + 8*(a^3*f*cosh(f*x + e)^7 - 3*a^3*f*cos
h(f*x + e)^5 + 3*a^3*f*cosh(f*x + e)^3 - a^3*f*cosh(f*x + e))*sinh(f*x + e)), 1/8*(((8*a^2 - 8*a*b + 3*b^2)*co
sh(f*x + e)^8 + 8*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)*sinh(f*x + e)^7 + (8*a^2 - 8*a*b + 3*b^2)*sinh(f*x + e
)^8 - 4*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^6 + 4*(7*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^2 - 8*a^2 + 8*a*b
 - 3*b^2)*sinh(f*x + e)^6 + 8*(7*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^3 - 3*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x
+ e))*sinh(f*x + e)^5 + 6*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^4 + 2*(35*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e
)^4 - 30*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^2 + 24*a^2 - 24*a*b + 9*b^2)*sinh(f*x + e)^4 + 8*(7*(8*a^2 - 8*
a*b + 3*b^2)*cosh(f*x + e)^5 - 10*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^3 + 3*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x
 + e))*sinh(f*x + e)^3 - 4*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^2 + 4*(7*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e
)^6 - 15*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^4 + 9*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^2 - 8*a^2 + 8*a*b -
 3*b^2)*sinh(f*x + e)^2 + 8*a^2 - 8*a*b + 3*b^2 + 8*((8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^7 - 3*(8*a^2 - 8*a*
b + 3*b^2)*cosh(f*x + e)^5 + 3*(8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)^3 - (8*a^2 - 8*a*b + 3*b^2)*cosh(f*x + e)
)*sinh(f*x + e))*sqrt(-a)*arctan(1/2*sqrt(2)*sqrt(-a)*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2*a - b)/(
cosh(f*x + e)^2 - 2*cosh(f*x + e)*sinh(f*x + e) + sinh(f*x + e)^2))/(a*cosh(f*x + e) + a*sinh(f*x + e))) - 2*s
qrt(2)*((8*a^2 - 3*a*b)*cosh(f*x + e)^5 + 5*(8*a^2 - 3*a*b)*cosh(f*x + e)*sinh(f*x + e)^4 + (8*a^2 - 3*a*b)*si
nh(f*x + e)^5 - 2*(4*a^2 - 3*a*b)*cosh(f*x + e)^3 + 2*(5*(8*a^2 - 3*a*b)*cosh(f*x + e)^2 - 4*a^2 + 3*a*b)*sinh
(f*x + e)^3 + 2*(5*(8*a^2 - 3*a*b)*cosh(f*x + e)^3 - 3*(4*a^2 - 3*a*b)*cosh(f*x + e))*sinh(f*x + e)^2 + (8*a^2
 - 3*a*b)*cosh(f*x + e) + (5*(8*a^2 - 3*a*b)*cosh(f*x + e)^4 - 6*(4*a^2 - 3*a*b)*cosh(f*x + e)^2 + 8*a^2 - 3*a
*b)*sinh(f*x + e))*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*s
inh(f*x + e) + sinh(f*x + e)^2)))/(a^3*f*cosh(f...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\coth ^{5}{\left (e + f x \right )}}{\sqrt {a + b \sinh ^{2}{\left (e + f x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)**5/(a+b*sinh(f*x+e)**2)**(1/2),x)

[Out]

Integral(coth(e + f*x)**5/sqrt(a + b*sinh(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)^5/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{4096,[10,12,10]%%%}+%%%{%%%{-20480,[1]%%%},[10,12,9]%%%}
+%%%{%%%{40

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\mathrm {coth}\left (e+f\,x\right )}^5}{\sqrt {b\,{\mathrm {sinh}\left (e+f\,x\right )}^2+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(e + f*x)^5/(a + b*sinh(e + f*x)^2)^(1/2),x)

[Out]

int(coth(e + f*x)^5/(a + b*sinh(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________